Regulation of growth and metabolism by the mTOR pathway
Abstract
My lab has a long-standing interest in the regulation of growth and metabolism. This interest stems from our early work on the pathway anchored by mTOR protein kinase, which we now appreciate is a major regulator of growth and anabolism responds to nutrients.
Because we found that lysosomes play a key role in the activation of mTORC1 by nutrients, we began to study lysosomes as well as other organelles, like mitochondria. We developed methods for the rapid isolation and profiling of these organelles (e.g., Lyso-IP), and used them to deorphan the functions of disease-associated genes. Because mTORC1 senses nutrients, we also became interested in the metabolic pathways that cells to use incorporate biomass and generate energy.
- Nutrient sensing by mTORC1 in vitro and in vivo. We seek to identify the glucose sensor for the mTORC1 pathway; discover nutrient sensors in animals beyond mammals; understand how the nutrient sensors function in vivo.
- Lysosomes in normal physiology and disease.We seek to understand how common and rare neurodegenerative diseases impact lysosomal function and identify the contents of lysosomes in specialized cells.
- In collaboration with chemists, we will develop drug-like molecules that target mTOR pathway components as well lysosomal proteins.
Field of study: Developmental and cell biology
Universities
PhD students must be enrolled in a partner university and will be employed by the IOCB Prague at the same time (part-time or full time), which results in a competitive salary (a scholarship from the university + a salary from the IOCB). Each university has its own process, terms, and deadlines for PhD applications, which is separate from the IOCB recruitment process. You may discuss the details with the respective PI.
How to apply
Please return to the PhD projects at IOCB Prague – Call for Applications 2025 page and follow the instructions.