
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5’RNA caps in bacteria and described the function of alarmones and their mechanism of function. The discovery was recently published in the journal Nature Communications.
Dinucleoside polyphosphates are small signaling molecules found in all types of organisms. They have been known for more than fifty years and are often called “alarmones”, as their concentration in cells increases under stress conditions (alarm). These molecules influence various cellular functions, but the mechanism of their action was as yet unknown. Hana Cahová and her colleagues noticed that the structure of these alarmones was similar to that of RNA and presumed that the alarmones were in fact part of the RNA in the form of so-called caps. Indeed, using mass spectrometry, they detected nine new types of these structures as part of RNA.

The researchers found that these molecules are accepted by RNA polymerases and used as the first building blocks in RNA synthesis. Moreover, they determined that dinucleoside polyphosphate capped RNA can be cleaved by two types of enzymes and thus degraded. Some of the dinucleoside polyphosphate RNA caps were methylated, and the researchers have shown that these methylations protected RNA from cleavage and further degradation.
Your cookie preferences do not allow showing this content from YouTube.
Edit settings